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Generic Process Examples Experiment LQCD calculates

Kl2
K+ → µ+νµ 
K+ → e+νe

fK fK

Kl3 K+ → π0 l+ νl 
K0 → π− l+ νl

|Vusf
+(0)|2 f+(0)

Kl4 K → π π l ν̄l ??

K → ππ
(CP conserving)

K0 → π+ π− 
K+ → π+ π0

|A0| 
|A2|

|A0|  |A2| 
(SMcpc inputs)

∆mK 
(CP conserving)

K0 ↔ π π ↔ K
0
 

(long distance physics) 
K0 ↔ O∆S=2 ↔ K

0
 

(short distance physics)

∆mK
∆mK 

(SMcpc inputs)

K0 → π π 
(indirect CP violation)

KL → π π�
K0 ↔ K

0
�
→ π π

 
independent of π π isospin

� =
B̂KF 2

K SM

∆mK
B̂K

K0 → π π 
(direct CP violation)

KL → π π 
depends on π π isospin

Re(��/�) 
= f(A0, A2, SM)

A0  A2 
(SMcpc inputs)

SMcpc = Standard Model CP-conserving parameters



RBC/UKQCD 2+1 flavor DWF ensembles

Thermalizing on BNL BGQProposed
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Improving Domain Wall Fermions

• When underlying gauge field changes 
topology, the DWF modes can extend 
farther in the fifth dimension

• This gives a non-perturbative contribution 
to residual chiral symmetry breaking

• Becomes problematic at strong coupling

• Add ratio of determinants of twisted Wilson 
fermions to suppress these gauge field 
dislocations

• Tune to minimize residual mass while still 
preserving toplogical ergodicity
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Force Gradient Integrator

• Proposed by Clark and Kennedy.  Implemented (and simplified) in CPS by Hantao Yin

• For 163 × 32 × 16 volumes, no speed-up compared to O(δτ2) Omelyan 
 

Scaling behavior of Integrators
We implemented the force gradient integrator and tested it on a
163 × 32× 16 lattice with 420MeV pion.
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Figure: Scaling behavior Omelyan 2.44± 0.21 Force Gradient 4.16± 0.21• For larger volumes, where δH grows with volume, force gradient may be helpful

• Tests on 483 × 64 × 16 with 220 Mev pions using force gradient and retuning Hasen-
bush masses, 184 minutes/accepted configuration went down to 108 minutes/accepted 
configuration.



MADWF Solver
• Other chiral fermion formulations may achieve a smaller mres for smaller Ls

• Mobius is one example: similar to DWF, but same mres for ~ Ls/2

• We have many simulations at different lattice spacings to put into our global fits, so 
not easy to change actions.  May also change topological tunneling, ...

• Idea:  use Mobius fermions to accelerate the linear solver for DWF 
                                      MADWF = Mobius Accelerated DWF

• Developed and implemented by Hantao Yin

• Gives 2× or more speed-up in quark propagator solves for current measurements.

Direct CG solve Möbius Accelerated DWF

operation Op. count time(s) operation Op. count time(s)
initial DWF(1e-2) 16*32 3

DWF(1e-5) 121*32 28
Möbius(1e-5) 4447*12 275
DWF(1e-5) 106*32 25
DWF(1e-5) 101*32 24
Möbius(1e-5) 4581*12 284
DWF(1e-5) 106*32 25
DWF(1e-5) 102*32 24
Möbius(1e-5) 4775*12 296
DWF(1e-5) 106*32 25

CG solve(1e-10) 11290*32 2672

final DWF(1e-10) 517*32 121

total 3.61e5 2672 total 2.03e5 1138

Table 1: Comparison of MADWF CG solver with a regular (zero started) CG solver. L = 32, L′ = 12, with
b = 1.841556,c = 0.841556. Data obtained from a 512 node partition on BG/P, both solve to 1e-10.

5 Parameter Usability
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Figure 3: Parameter usability test: The black and blue circles show the comparison of the CG counts. Black
circles are from a direct solve. Blue circles show the CG counts from the final fix up solve in MADWF. The
black and blue triangles show the wall clock time for both a direct solve and MADWF. Both solve to 1e-10
for all configurations. A wall source is used for all solves.

The Möbius accelerated domain wall fermion (MADWF) is useful only in the case that the same set of
parameters (L′, b and c) produces good guesses for all (or most) configurations from the same ensemble and
all (or most) source vectors in question. Since it is generally not practical to tune the parameters for each
lattice configuration or each source vector. In practice we found that the same set of Möbius parameters can

6



Scaling at unphysical light quark mass
63
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FIG. 26: Ratios of dimensionless combinations of lattice quantities Q (listed in the figure) between the 323

and 243 lattices at the matching point corresponding to ml = 0.006, mh = 0.03 on the 323 lattice. A value of

unity indicates perfect scaling. The ratios mll/mhhh and mlh/mhhh (and consequently mll/mlh) are defined

to scale perfectly at these quark masses as a consequence of our choice of scaling trajectory.

the quark masses used in the matching procedure above. The figure shows that we can expect only

small scaling violations on the order of 1–2% for the other quantities used in our global fits, and

also confirms that other dimensionless combinations of lattice quantities would be equally suitable

choices for the definition of the scaling trajectory.

E. Results of combined scaling and chiral fits

Using the matching factors Zl , Zh and Ra determined as described in the previous section we are

ready to perform a simultaneous fit of all our pion, kaon and Ω mass and decay constant data

to either the NLO forms in chiral perturbation theory, Eq. (41) to Eq. (45), or the analytic forms

Eq. (49) to Eq. (55). We also correct for finite volume effects in NLO PQChPT by substituting the

chiral logarithms with the corresponding finite-volume sum of Bessel functions [44]. The iterative

procedure is the same for each of these three fit ansätze. For each iteration i, we:

1 estimate the physical strange-quark masses, mis, from the (i−1)th iteration;

2 interpolate and reweight the data to mis;

3 fit the mx,my,ml dependence of the light pseudoscalar mass and decay constant;

4 fit the mx,ml dependence of kaon quantities at mh =mis;

27
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FIG. 10. Ratios of various dimensionless combinations of observables between the 32I and 32ID ensemble

sets. The combination of physical quantities is given above or below the corresponding point. A ratio of

unity indicates perfect scaling between the two ensemble sets.

simulated quark masses on a common scale, and draw a line to indicate the physical point as

determined in section V. These plots are shown in figure 11.

C. Chiral/Continuum Fitting Strategy

The chiral/continuum fit forms are obtained via a joint expansion in a2 and m̃ f . As in ref. [1] we

consider both an NLO expansion around the SU(2) chiral limit using partially-quenched chiral per-

turbation theory (PQChPT) and also a leading-order analytic expansion about an unphysical light-

quark mass. Including finite-volume effects in the ChPT, this provides three fit ansätze, which we

label ‘analytic’, ‘ChPT’ and ‘ChPTFV’, where the latter two refer to the chiral perturbation the-

ory forms without and with finite-volume corrections respectively. For each ansatz we expand the

heavy-quark mass dependence to leading order in the vicinity of the physical strange-quark mass.

We use a power-counting scheme whereby terms of order m̃ f a2 and higher are neglected. This

truncation leaves only a single a2 term arising from the expansion of the leading order parameter.

For example, the analytic form for the pion decay constant fll in physical units is as follows:

fll =C fπ
0

(
1+C fπ

a a2
)
+C fπ

1 (mRv −mRl0)+C
fπ
2 (mRl −mRl0)+C

fπ
3
(
mRh −mRh0

)
, (24)

where the superscript R indicates a renormalized physical quark mass (in a general scheme), and

mRl0 and m
R
h0 are the expansion points for the light and heavy quark masses respectively. In our

power counting scheme, a term in the lattice spacing arises only in the expansion of the leading

Compare
• DWF+I:  1/a = 2.28 GeV

• DWF+I:  1/a = 1.73 GeV
(Phys. Rev. D83 (2011) 074508)

Compare
• DWF+I: 1/a = 2.28 GeV

• DWF+ID: 1/a = 1.37 GeV
(RBC/UKQCD to appear)

2%

5%

See few percent scaling errors from / .a1 1 73 GeV"3= , with larger %O 5_ i errors from 1/a 
= 1.37 GeV



Parameters in DWF+I and DWF+ID Global Fits

• Simultaneous fit to mπ
2, mK

2, fπ, fK, and mΩ 

• mπ, mK and mΩ chosen to be quantities without O(a2) corrections

• Parameters in SU(2) chiral expansion:

* mπ
2 and fπ:  8 parameters − 2 LO, 4 NLO, 2O(a2)

* mK
2 and fK:  6 parameters − 2 LO, 4 NLO, 2O(a2)

* mΩ:  1 LO, 1 NLO

* Total: 18 parameters

• Fits also determine 

* 3 lattice spacings

* 2 ratios of light quark mass renormalization factors

* 2 ratios of strange quark mass renormalization factors

* ms



Global Fits to Multiple Ensembles

• Fit mπ
2, fπ, mK

2, fK and mΩ to an expansion in powers of a2 and ml, 
including SU(2) logs where appropriate.  Examples are 
 

Version 2 April 20, 2009 8

2. SU(2)

m2ll = χl
[
1+ cBa

2
]
+ χl ·

{
16

f 2

(
(2L

(2)
8 −L

(2)
5 )+2(2L

(2)
6 −L

(2)
4 )

)
χl +

1

16π2 f 2
χl log

χl

Λ2χ

}

(11)

fll = f
[
1+ c f a

2
]
+ f ·

{
8

f 2
(2L

(2)
4 +L

(2)
5 )χl −

χl

8π2 f 2
log

χl

Λ2χ

}

. (12)

3. SU(2) for kaons

m2xy = B(K)(mh) m̃y
[
1+ cB(K)a

2
]
+ B(K)(mh) m̃y

{
λ1(mh)

f 2
χl +

λ2(mh)

f 2
χx

}
(13)

fxy = f (K)(mh)
[
1+ c f (K)a

2
]

+ f (K)(mh)

{
λ3(mh)

f 2
χl +

λ4(mh)

f 2
χx

−

1

(4π f )2

[
χx+χl

2
log

χx+χl

2Λ2χ
+
χl−2χx

4
log

χx

Λ2χ

]}

(14)

4. Omega baryon

For a given choice of the valence strange mass my and the dynamical strange mass mh, we simply

fit to

mΩ(a2,ml,mh) = mΩ(0,0,mh)
[
1+ cmΩ,aa

2+ cmΩ,mlml
]

(15)

5. Counting parameters for fits

We want to do simultaneous fits of our data to Eqs. 11 to 15 for two ensembles, i.e.. using SU(2)

fits for the light quarks, SU(2) for kaons for the kaon and a linear fit for mΩ. The following

parameters will enter the fits and, after listing them, we discuss various choices one can make for

• Note different O a2` j coefficients used for DWF+I and DWF+ID

• Fit all partially quenched data, including SU(2) ChPT finite volume  
corrections in fit

• Reweight data from simulation mh to self-consistently determined ms (Jung)

• Interpolate valence propagators to self-consistently determined ms

• Use mπ mK and mΩ set scale.
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• Early fits from partial DWF+ID dataset

• Data consistent with chiral logarithms



mπ
2/mf versus mf
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FIG. 13. Global fits obtained using NLO SU(2) chiral perturbation theory with finite-volume corrections

for the pion mass (top) and fπ (bottom) on the 32ID ensembles. Here the left-hand plot of each pair show

the data at the simulated strange-quark mass and the corresponding fit curves on the ml = 0.001 ensemble,

and the right-hand plots those on the ml = 0.0042 ensemble. The plots of the pion mass have m2π/(m̃x+ m̃y)

on the ordinate axis, a quantity used traditionally to emphasize the chiral curvature of the data.



DWF+I DWF+I and DWF+ID
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FIG. 43: Dependence of the kaon decay constant on the mass of the light valence quark. The left panel

shows the results from the 243, ml = 0.005 ensemble and the right panel from the 323,ml = 0.004 ensemble.

In each case the results are for the physical strange quark mass. There are two curves plotted. The orange

curve is the result one infers for the infinite volume, while the red curve is the result we obtain on the finite

volume. As we do not adjust our data for finite volume effects, the red curve should go through our data.

The orange curve also goes through our data which is an indication that the finite volume effects in our

data are substatistical, and the difference between the orange and red curves at lighter masses indicates that

one should expect substantial finite volume effects if one were to simulate at these lighter masses without

changing our present volume.

f continuumπ = 124(2)(5)MeV (61)

f continuumK = 149(2)(4)MeV (62)

( fK/ fπ)continuum = 1.204(7)(25) , (63)

where we display the statistical and systematic errors separately. We note that the known, exper-

imental value of fπ influenced our choice to take the central value of physical quantities as the

average of the results from the analytic and finite-volume NLO ChPT ansätze. The prediction for

fπ cannot therefore be considered unbiased, however as our aim is to select the most likely central

value for phenomenologically important quantities such as fK/ fπ and BK our procedure is both

appropriate and contains a prudent systematic error.

Applying the same procedure to obtain predictions for the physical bare quark masses for the

β = 2.25 323 ensembles, we find:

m̃ud = 2.35(8)(9)MeV and m̃s = 63.7(9)(1)MeV, (64)

39

In the previous section we demonstrated that the ChPTFV fit forms describe our data reliably over

a considerably larger range of pion masses than the linear ansatz. For the final predictions given

in the following sections we therefore take the ChPTFV results for our central values and use the

analytic ansatz only to estimate the chiral systematic. However, we continue to find it striking that

a linear ansatz appears capable of describing QCD at the 1% level from the 260 MeV pion-mass

regime down to the physical point, and at the 2% level if that range is extended to 350 MeV.

C. Global Fit Predictions

Applying the procedure detailed above, we present our predictions for the pion and kaon decay

constants:

fπ = 127.1(2.7)(0.7)(2.5)MeV, (27)

fK = 152.4(3.0)(0.1)(1.5)MeV, (28)

fK/ fπ = 1.1991(116)(69)(116) . (29)

Here the errors are statistical, chiral and finite-volume respectively. Note that by restricting the

ChPTFV fit to mπ < 350 MeV rather than mπ < 420 MeV used in the 2010 analysis (a 30% cut

in the light quark mass), we obtain a value for fπ that is now highly consistent with the known

physical value, justifying our assertion that the previously observed deviation was mainly due to

the influence of higher order terms in the chiral expansion.

For the inverse lattice spacings we obtain:

a−1(32I) = 2.310(37)(15)(9) GeV, (30)

a−1(24I) = 1.747(31)(4)(4) GeV, (31)

a−1(32ID) = 1.3709(84)(8)(3) GeV. (32)

For comparison, in the 2010 analysis we obtained a−1(32I)= 2.282(28)(1)(1)GeV and a−1(24I)=

1.730(25)(1)(0) GeV by fitting only to the Iwasaki data. These results are highly consistent, al-

though we find a considerable enhancement in the systematic errors. Upon further investigation

we determined that these differences arise almost entirely because the scaling factors Zl , Zh and

Ra are now allowed to vary between the fits (generic scaling), as opposed being fixed to the values

obtained at some unphysical mass point (fixed trajectory) as in the 2010 analysis: In the fixed

trajectory case the prediction for the physical Omega baryon mass, which we use to set the overall
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very interesting to see how the different ansätze for the chiral extrapolation become constrained or

invalidated as we perform simulations with even lighter masses. We point out that the difference

in the results from the analyses using the finite-volume ChPT and analytic ansätze is much smaller

for the other quantities studied in this paper than for fπ .

The main physical results of this study are:

fπ = 124(2)(5)MeV {Eq.(61)}; fK = 149(2)(4)MeV {Eq.(62)};
fK
fπ

= 1.204(7)(25) {Eq.(63)};

mMSs (2GeV) = (96.2±2.7)MeV {Eq.(95)}; mMSud (2GeV) = (3.59±0.21)MeV {Eq.(94)};

[ΣMS(2GeV)]1/3 = 256(6)MeV {Eq.(98)};

r0 = 0.487(9) fm and r1 = 0.333(9) fm {Eq.(66)} . (103)

For convenience we also display the equation number where the results were presented earlier in

this paper to help the reader find the corresponding discussion. All the results in Eq. (103) were

obtained after reweighting the strange-quark mass to its physical value at each β , and the renor-

malized quark masses were obtained using non-perturbative renormalization with non-exceptional

momenta as described in SectionVI. The low-energy constants obtained by fitting our data to

NLO chiral perturbation theory can be found in Sec. VE.

The configurations and results presented in this paper are being used in many of our current stud-

ies in particle physics phenomenology, including the determination of the BK parameter of neutral

kaon mixing in the continuum limit [34]. In parallel to these studies we are exploiting config-

urations generated at almost physical pion masses on lattices with a large physical volume (∼

4.5 fm) but at the expense of an increased lattice spacing. Preliminary results obtained for the

meson spectrum and decay constants and for ΔI = 3/2 K → ππ decay amplitudes were recently

presented in Refs. [48, 69]. Having access to data with excellent chiral and flavor properties with a

range of lattice spacings and quark masses makes this an exciting time indeed for studies in lattice

phenomenology.

Acknowledgments

The calculations reported here were performed on the QCDOC computers [70–72] at Columbia

University, Edinburgh University, and at the Brookhaven National Laboratory (BNL). At BNL,
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B. Renormalized quark masses

After the detailed discussion of the quark-mass renormalization, it is now straightforward to com-

bine the renormalization constants in Eqs. (92) and (93) with the physical bare quark masses on

the 323 lattice in Eq. (64) to obtain the light and strange quark masses renormalized in MS scheme:

mMSud (2GeV) = ZMS(32)cml (µ = 2GeV,n f = 3) · m̃ud(323) ·a−1(323)

= 3.59(13)stat(14)sys(8)ren MeV, (94)

mMSs (2GeV) = ZMS(32)cmh (µ = 2GeV,n f = 3) · m̃s(323) ·a−1(323)

= 96.2(1.6)stat(0.2)sys(2.1)ren MeV, (95)

where the three errors on the right-hand side correspond to the statistical uncertainty, the system-

atic uncertainty due to the chiral extrapolation and finite volume, and the error in the renormaliza-

tion factor. We recall that for the error due to the chiral extrapolation we conservatively take the

full difference of the results obtained using the finite-volume NLO SU(2) and analytic fits and for

the central value we take the average of these results. We estimate the finite-volume effects from

the difference of the results obtained using finite volume and infinite-volume NLO ChPT fits and

combine these errors in quadrature. The finite-volume errors prove to be small. The error in the

renormalization factor includes those in Eqs. (92) and (93).

The ratio of the s and ud quark masses is

ms
mud

= 26.8(0.8)stat(1.1)sys. (96)

We end this section by presenting our results for the leading-order LEC B and the chiral conden-

sate. Using the finite-volume NLO ChPT fits we find

BMS(2GeV) = ZMS(32)−1ml (µ = 2GeV,n f = 3) ·B(323) ·a−1(323) = 2.64(6)stat(6)sys(6)ren GeV.

(97)

Combining this result with the pion decay constant in the chiral limit, also obtained using the

finite-volume NLO ChPT fits the chiral condensate is found to be

[ΣMS(2GeV)]1/3 = [ f 2B(2GeV)/2]1/3 = 256(5)stat(2)sys(2)ren MeV. (98)

In Eqs. (97) and (98) the second error is only due to finite volume corrections estimated from the

difference of finite and infinite volume NLO ChPT fits.
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are negligable compared to the truncation error on our final results, it is illustrative to consider

at what point they enter into our calculations. The RI/(S)MOM schemes are actually defined in

the limit µ2 � Λ2QCD, at which the behavior is purely perturbative. The momentum schemes that

we actually implement on our lattice can be therefore be regarded as different schemes that take

into account the non-perturbative behavior. We therefore consider the aforementioned errors not

as properties of the numerical renormalization factors, but rather as additional errors on the per-

turbative conversion to the MS-scheme, arising from the fact that the scheme-change factors are

calculated using a slightly different scheme than the numerical results.

There are two final sources of systematic error on the renormalization conditions – those arising

from the chiral extrapolation and finite-volume errors on the lattice spacings used in the scale-

setting and the continuum extrapolation. In the previous section, we repeated the analysis using

the lattice spacings obtained from our global fits with the three different chiral ansätze. We can

therefore estimate these errors using the procedure discussed in section VB, namely taking the

central values from the ChPTFV ansatz, the chiral error from the difference between this and the

analytic results, and the finite-volume error from the difference of the ChPTFV and ChPT results.

The final values for the quark mass renormalization factors are:

Zcml(MS,3 GeV) = 1.361(26)(17)(2)(16) ,

Zcmh(MS,3 GeV) = 1.343(17)(3)(1)(16) .
(53)

Here the errors are due to statistical, chiral, finite-volume and truncation effects.

B. Results for the Physical Quark Masses

Multiplying Zml and Zmh by the physical quark masses in the matching scheme, we obtain

mu/d(MS,3 GeV) = 3.05(8)(6)(1)(4)MeV, ms(MS,3 GeV) = 83.6(1.7)(0.7)(0.4)(1.0)MeV,
(54)

where the errors are statistical, chiral, finite-volume and from the perturbative matching. In the

2010 analysis we obtained the following values in the MS-scheme at 2 GeV:

mu/d(MS,2 GeV) = 3.59(13)(12)(6)(8)MeV, ms(MS,2 GeV) = 96.2(1.5)(0.2)(0.1)(2.1)MeV ,

(55)

where the errors are as above. Although the central values are not directly comparable, we note

that the renormalization error is considerably smaller as a fraction of the mass than the previous
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result. This is mainly due to the reduction of the truncation errors when going from 2 GeV, which

we estimated to be ∼ 2.1% [1], to 3 GeV where the error is ∼ 1.2%. The removal of the O(4)-

symmetry breaking artifacts in our present analysis does not affect the matching systematic as it

was formerly treated by inflating the statistical error.

For completeness we also calculate the ratios of the strange and up/down quark masses:

ms
mu/d

= 27.36(39)(30)(22)(0) , (56)

where the errors are again as above.

In contrast, in our intermediate mass-dependent matching scheme (cf. section VC) we obtain
ms
mu/d

= 27.74(22)(3)(25), which differs from the above due to the small differences between Zl
and Zh on the 24I ensemble set. As we discussed in ref. [1], these quantities are related as

Z24Ih = Z24Il
(
1+ cmΛ2QCD

[
(a24I)2− (a32I)2

])
,

where cm is some coefficient, hence the differences in the quark mass ratios can be considered as

a discretization effect, which we have eliminated by switching to a continuum scheme.

VII. CHIRAL/CONTINUUM FITS AND PHYSICAL RESULTS FOR BK

In this section we present our results for the neutral kaon mixing parameter BK . Continuum re-

sults are obtained by performing chiral/continuum fits over our three ensemble sets following the

strategy outlined in section IV. This analysis extends that in ref [2] through the inclusion of the

32ID ensemble set.

As BK is a scheme-dependent quantity we must perform our fits to renormalized data. We de-

termine the renormalization factors again using variants of the RI/MOM scheme with symmetric

kinematics. We first outline this calculation, then discuss the application of our chiral fitting tech-

niques to this quantity. Finally we present the continuum results in the MS scheme at 3 GeV.

A. Non-perturbative Renormalization Factors

Unlike in the case of the quark mass renormalization, we require renormalization factors for BK
on both the Iwasaki and Iwasaki+DSDR ensemble sets. In this case, the option of calculating

our lattice renormalization factors directly at 3 GeV is not an option since we cannot simulate
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In the 2010 analysis we obtained:

BK(MS,3 GeV) = 0.529(5)(15)(2)(11) . (70)

This is highly consistent with the result of the present analysis. In our new result we see a large

improvement in the chiral extrapolation systematic, which results from lowering the pion mass cut

to 350 MeV from the 420 MeV used in the previous analysis.

VIII. CHIRAL/CONTINUUM FITS AND PHYSICAL RESULTS FOR THE SOMMER SCALES

In this section we present the results of applying our global fit technique to the Sommer scales, r0
and r1. In ref. [1] we determined continuum values for these parameters using global fits to our

Iwasaki ensemble sets. In this paper we extend these fits to include the 32ID ensemble set and

observe the effect of lowering the pion mass cut. The values of r0 and r1 measured on the 32ID

ensemble sets can be found in section III.

Assuming a linear dependence on the quark masses and a2, we performed our chiral/continuum

fits using the following form:

r1i = cri,0(1+ cA(1)ri,a [a1]2)+ cri,ml m̃
1
l + cri,mh(m̃

1
h−mh0) (71)

on the primary lattice 1.

For convenience, we simultaneously fit both r0 and r1, even though they do not share any common

parameters other than the scaling parameters. The lattice spacings and scaling factors were fixed

to those obtained in the main analysis, with the fits repeated for each of the three chiral ansätze.

For each fit we applied the same cuts as were performed to the data in section V; this corresponds

Ansatz χ2/dof χ2/dof

Uncut Cut

Analytic 1.45(66) 0.141(71)

ChPT 1.47(67) 0.41(40)

ChPTFV 1.47(67) 0.42(40)

TABLE XXIV. Fit ansatze and the associated uncorrelated χ2/dof obtained by fitting to r0 and r1 over the

full data set (second column) and to the cut data set (third column). The upper bounds on the pion mass in

the cut data sets are mπ = 350 MeV for the ChPT and ChPTFV fits and mπ < 260 MeV for the analytic fit.
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1. Systematic Errors

For our central values and statistical errors of our final MS prediction, we follow the 2010 analysis

in taking the results obtained using the SMOM(/q,/q) intermediate scheme, which is best described

by one-loop perturbation theory. Following section V we estimate the finite-volume and chiral

extrapolation systematics on this quantity from the differences between the ChPTFV result (which

we take as our central value) and the ChPT and analytic results respectively. As we propagated

the differences between the lattice spacings through our analysis in section VIIA 4, the aforemen-

tioned systematics on the renormalization factors are automatically included in the differences

above.

The remaining systematic errors are associated with the perturbative conversion into the MS

scheme. The largest of these is the perturbative truncation error. To determine this we again

follow the 2010 analysis strategy of taking the difference between the values of BK in the MS-

scheme at 3 GeV obtained using the SMOM(/q,/q) and SMOM(γµ ,γµ) intermediate schemes,

the latter of which is also well-described by perturbation theory. As discussed in section VIA 5

and above, there are non-perturbative effects associated with the spontaneous chiral symmetry

breaking and the presence of additional energy-scales (ΛQCD, ms, etc.), that contribute to the per-

turbative systematic. In ref. [2] we found that in the non-exceptional schemes these effects are tiny

compared to the truncation systematic, therefore we do not include these effects in our systematic

error budget.

2. Final Results

Using the ChPTFV result in the SMOM(/q,/q) for the central value and statistical error, and obtain-

ing the chiral and finite-volume systematic errors as above, we find:

BK(SMOM(/q,/q),3 GeV) = 0.540(8)(7)(3)(11) . (68)

where the errors are associated with the statistical, chiral, and finite-volume respectively. Convert-

ing this to the MS-scheme at 3 GeV using one-loop perturbation theory we obtain

BK(MS,3 GeV) = 0.535(8)(7)(3)(11) , (69)

where the first three errors are as before, and the final error is that associated with the truncation

of the perturbative series.

  (stat, chiral, finite V, pert. theory)

Some physical results

Chiral extrapolation errors markedly reduced



Non-perturbative Renormalization
• Many of the quantities discussed in this talk require renormalization

• Needed to match to continuum schemes where low energy effective Hamiltonians 
are determined to NnLO and renormalized at some scale μ

• Schrodinger functional and RI-MOM NPR schemes well understood

• RI-MOM is primarily used for kaons - simplicity?

• Recent improvements in RI-MOM

* Non-exceptional symmetric momenta - RI-SMOM

* Twisted b.c. to allow selection of continuous range of momenta

* Volume sources reduce statistical error dramatically

* Compute non-perturbative continuum running from fine lattices, use for coarse 
lattices (Rudy Arthur, Peter, Boyle, PRD 83 (2011) 114511).   

* Implemented for K " rr (N. Garron) for RBC-UKQCD 
simulations on coarse lattices (1/a = 1.37 GeV). 

                 

Our strategy

In the lattice scheme:

lim
a1→0

�
Z(µ1, a1)Z

−1(µ0, a1)
�

� �� �
fine lattice

× Z(µ0, a0)� �� �
coarse lattice

= Z(µ1, a0)

The Rome-Southampton condition becomes

L−1
0 � µ0 �

π

a0
[µ0 ∼ 1.5 GeV]

ΛQCD � µ1 �
π

a1
[µ1 ∼ 3 GeV]

µ0 can be non-perturbative

No discretization errors associated with a0 × µ1

even better: the discretization effects coming from high momentum disappear since we
take the continuum limit.

Can use different actions for the coarse and the fine lattices.

Nicolas Garron (University of Edinburgh) NPR with step scaling matrix July 12, 2011 11 / 26



Some K " r r physics
A neutral kaon beam will contain only long-lived KL

 far enough from source.
Dominant decay is KL " r r r, small phase space gives long lifetime. 

Experiments measure decay amplitudes for KL compared to KS (2 complex numbers).
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56 CHAPTER 1. COMMON THEORETICAL ISSUES

ε′K =
η+− − η00

3
=

εK√
2

[〈(ππ)I=2|KL〉
〈(ππ)I=0|KL〉

− 〈(ππ)I=2|KS〉
〈(ππ)I=0|KS〉

] [
1 + O

(
A2

A0

)]

=
A2

A0

1√
2

[
1 − λ2

1 + λ0
− (1 − λ0)(1 + λ2)

(1 + λ0)2

]
. (1.175)

Next we use
λ2 = λ0 e2 i (Φ0−Φ2) , (1.176)

and expand to first order in the small phases:

ε′K =
1

2
√

2

A2

A0
(λ0 − λ2) + O

(
A2

2

A2
0

,φ2 , (Φ0 − Φ2)
2

)

=
1√
2

A2

A0
i (Φ2 − Φ0) . (1.177)

A non-vanishing value of ε′K implies different CP violating phases in the two isospin am-
plitudes and therefore |∆S| = 1 CP violation. Since experimentally Re ε′K > 0, one finds
Φ2 > Φ0. The phase of ε′K is 90◦ + δ2 − δ0 � 46◦ and ε′K/εK is almost real and positive.

Since (1.177) does not depend on q/p, there is no contribution from CP violation in
mixing to ε′K . The strong phases drop out in the combination

Im
A0

A2
ε′K � 1

2
√

2
(Im λ0 − Im λ2) . (1.178)

Since we work to first order in φ, we can set |λI | = 1, and therefore (1.178) purely measures
interference type CP violation. From the definition in (1.175) one further finds that

Re ε′K � 1

6

(

1 −
∣∣∣∣∣
Aπ0π0 Aπ+π−

Aπ0π0 Aπ+π−

∣∣∣∣∣

)

� 1√
2

|A2|
|A0|

sin (δ0 − δ2) (Φ2 − Φ0) (1.179)

originates solely from |Af/Af | �= 1. Hence Re ε′K measures CP violation in decay.

Experimentally the quantity |η00/η+−|2 = 1− 6Re ε′K/εK has been determined. Recent
results are

Re
ε′K
εK

= (20.7 ± 2.8) × 10−4 (KTeV) [88] ,

Re
ε′K
εK

= (15.3 ± 2.6) × 10−4 (NA48) [89]. (1.180)

We therefore find from (1.177) that the difference of the CP violating phases is tiny:

Φ2 −Φ0 = (1.5± 0.2) · 10−4 (KTeV) , Φ2 −Φ0 = (1.1± 0.2) · 10−4 (NA48) . (1.181)

1.6.2 Phenomenology of εK and ε′
K

In order to exploit the precise measurement of φ = − arg M12/Γ12 from εK in (1.173) one
must calculate the phases of

M12 =
1

2mK
〈K0|H |∆S|=2|K0〉 − Disp

i

4mK

∫
d4x 〈K0|H |∆S|=1(x)H |∆S|=1(0)|K0〉 .

(1.182)
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and

Γ12 = Abs
i

2mK

∫
d4x 〈K0|H |∆S|=1(x)H |∆S|=1(0)|K0〉 (1.183)

=
1

2mK

∑

f

(2π)4δ4(pK − pf )〈K0|H |∆S|=1|f〉 〈f |H |∆S|=1|K0〉 � 1

2mK
A∗

0 A0 .

Here Abs denotes the absorptive part of the amplitude. It is calculated by retaining only
the imaginary part of the loop integration while keeping both real and imaginary parts of
complex coupling constants. Analogously, the dispersive part Disp is obtained from the real
part of the loop integral.

The second term in (1.182) shows that, at second order, also the |∆S| = 1 Hamiltonian
contributes to M12. In the B system the corresponding contribution is negligibly small.
The Standard Model |∆S| = 2 Hamiltonian reads

H |∆S|=2 =
G2

F

4π2
MW

[
λ∗2

c η1 S(xc) + λ∗2
t η2 S(xt)

+ 2λ∗
c λ∗

t η3 S(xc, xt)
]
bK(µ)QK(µ) + h.c. (1.184)

It involves the |∆S| = 2 operator

QK(µ) = dLγνsL dLγνsL . (1.185)

In (1.184) λq = VqdV
∗
qs, xq = m2

q/M
2
W and S(x) is the Inami-Lim function introduced in

(1.120). The third function S(xc, xt) comes from the box diagram with one charmed and
one top quark. One finds S(xc) � xc, S(xc, xt) � xc(0.6 − ln xc) and S(xt) � 2.4 for
mt � 167GeV in the MS scheme. Short distance QCD corrections are contained in the ηi’s.
In the MS scheme the next-to-leading order results are η1 = 1.4± 0.3, η2 = 0.57± 0.01 and
η3 = 0.47 ± 0.04 [90]. η1 strongly depends on mc and αs, the quoted range corresponds to
mc = 1.3GeV. A common factor of the QCD coefficients is bK(µ), the kaon analogue of
bB(µ) encountered in (1.119). The matrix element of QK is parameterized as

〈K0|QK(µ)|K0〉 =
2

3
f2

K m2
K

B̂K

bK(µ)
, (1.186)

where fK is the kaon decay constant.

CP violation in the kaon system is related to the squashed unitarity triangle with sides
|λu|, |λc| and |λt|. In the limit λt = 0 all CP violation vanishes, thus CP violation is
governed by the small parameter Im (λt/λu). This explains the smallness of the measured
phases in (1.173) and (1.181). This pattern is a feature of the CKM mechanism of CP
violation and need not hold in extensions of the Standard Model. Hence kaon physics
provides a fertile testing ground for non-standard CP violation related to the first two
quark generations.

The presence of the second term in (1.182) impedes the clean calculation of the mixing
phase φM = arg M12 in terms of the CKM phases. It constitutes a long distance contri-
bution, which is not proportional to B̂K . Since both terms in (1.182) have different weak
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BK and corrections to ε
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Long distance physics 
hep-ph/0201071 (page 58, Nierste) 

Buras, Guadagnoli (PRD 78 (2008) 033005
Buras, Guadagnoli, Isidori 

(PLB 688 (2010) 309

• Norman Christ:  measure these by extending Lellouch-Lüscher finite volume methods

• Jianglei Yu:  numerical investigation of signal and renormalization for connected graphs
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ū

π0

K0

s̄

d

u

ū
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Direct calculations of K"rr ΔI = 3/2 amplitudes
• RBC-UKQCD DWF+ID (Iwasaki + DSDR gauge action) ensemble 

 

    

The DSDR Term

Christopher Kelly () Continuum Results for Light Hadronic Quantities using Domain Wall Fermions with the Iwasaki and DSDR GaugeJuly 2011 5 / 12

Introduce a weighting factor to the gauge action

W(M; εf ; εb) =
det

[

DW(−M + iεbγ
5)†DW(−M + iεbγ

5)
]

det [DW(−M + iεf γ5)†DW(−M + iεf γ5)]
=

∏

i

λ2
i + ε2f

λ2
i + ε2b

where DW is the Wilson Dirac operator and λ are eigenvalues of γ5DW .

MD force for eigenmode i

Fi (εf , εb) =
d

dλi

(

− log
λ2
i + ε2f

λ2
i + ε2b

)

Parameters εf and εb tune peak and
tail of force dist.

Suppress near-zero modes while
keeping very-near-zero modes required
for topology change.

‘Dislocation Suppressing Determinant
Ratio’ (DSDR)

• 170m MeVdyn =r , 32 64 163 # #  lattice volume, .4 60 fm 3^ h  physical volume, 
1/a = 1.37(2) GeV (a = 0.146(2) fm), ( ) .m 2 3 7GeV MeVMS

res n = =

• ( )m 142 2 MeVPQ =r , ( )m 508 9 MeVK = , ( )p 199 4 MeV=rv

• Physical decays have m 140MeV=r , m 500MeVK = , p 200MeV=rv 281

Figure 19: Quark flow diagram of the ∆I = 3/2 K → ππ correlator computed in

this report. The time tK of the kaon source, tπ of the pion sink, and t of the weak

operator, are indicated. The times tK and tπ are fixed at the values shown for a given

calculation, while the time t is varied.

M. Lightman and E. Goode, Lattice 2010
M. Lightman, Columbia PhD thesis, 2011
E. Goode, talk Lattice 2011

Single wall source for π's on given lattice
Multiple kaon locations, since inexpensive
Results from 62 configurations



Results for K"rr ΔI = 3/2 amplitudes
• Simulations also done on quenched lattices, at many kinematic points, which help to 

estimate errors from extrapolations to physical kinematics on unquenched lattices

377

0 0.5 1 1.5 2 2.5ntw

0

0.4

0.8

1.2

1.6

Re
(A

2) x
 1

08  (G
eV

)

Lattice Data
Extrapolation to EPiPi

2=mK
2

ntw=2.303

Figure 115: Plot of Re(A2) vs. number of twists (ntw) for the 323 coarse lattices, and

extrapolation to energy conserving kinematics.

Extrapolation of Re(A2) to physical kinematics Error estimates (M. Lightman thesis)

• N. Garron and A. Lytle have NPR results now, using 4 RI-SMOM schemes.

• Reweighting to physical light dynamical mass 

     

Reweighting Results

� Reweight from msea
l = 0.001 → 0.0001 in order to match

valence mass

� Reweight in 30 increments, each of size 3× 10−5

0.0001 (rw) 0.0005 0.001 (sim)1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6 x 10−8

ml (sea)

Re(A2)

0.0001 (rw) 0.0005 0.001 (sim)

−6.2

−6

−5.8

−5.6

−5.4

x 10−13

ml (sea)

Im(A2)

Re(A2) = 1.397(81)× 10−8GeV
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FIG. 1: R(tQ) for the 3 operators which contribute to K → (ππ)I=2 decay amplitudes: (a) (sd)L (ud)L, (b) (sd)L (ud)R and

(c) (sidj)L (ujdi)R, where (sd)L (ud)L,R = (siγµ(1− γ5)di) (ujγµ(1∓ γ5)dj). i, j are color labels and tK and tππ are 0 and 24.

The various sources of systematic error are analysed
in detail in [1] and our conclusions are summarised in
Tab. II. The dominant source of uncertainty is due to
lattice artefacts, and since we have a relatively coarse
lattice and the matrix elements are proportional to a−3,
these errors are substantial. The estimate of 15% is ob-
tained in two ways: from the variation in the value of
a obtained using mΩ, fπ, fK and r0 to set the scale
and from the a2 term in global chiral-continuum fits of
the BK parameter of neutral kaon mixing (fits are per-
formed using both IDSDR and Iwasaki lattices). The
finite-volume uncertainties are estimated from the differ-
ences of infinite- and finite-volume one-loop chiral per-
turbation theory. The uncertainties in the Wilson coeffi-
cients are conservatively taken as the difference between
the leading and next-to-leading order terms as defined
in [22]. We estimate the truncation errors in the pertur-
bative factors converting the operators to the MS-NDR
scheme from the variation of the results obtained using
different RI-SMOM intermediate schemes. We note also,
that in contrast to ∆I = 1/2 decays, all the quarks par-
ticipating directly in ∆I = 3/2 decays are valence quarks
and in such cases the effect of using partially quenched
or partially twisted boundary conditions are small [23].
For more details and for a discussion of the remaining
uncertainties, due to the small difference from physical
kinematics, and in the evaluation of the Lellouch-Lüscher
factor and the step-scaling functions, we refer the reader
to [1].
Our result for ImA2 can be combined with the experi-

mental results for ReA2, ReA0 = 3.3201(18)×10−7GeV
and ε′/ε to obtain the unknown ratio:

ImA0

ReA0
= −1.63(19)stat(20)syst × 10−4 . (12)

This ratio allows us to determine in full QCD the ef-
fect of direct CP violation in KL → ππ on ε, customarily
denoted by κε [3], (κε)abs = 0.923±0.006. where the sub-
script “abs” denotes that at present only the absorptive
long-distance contribution (Im Γ12) is included [4] (the

ReA2 ImA2

lattice artefacts 15% 15%

finite-volume corrections 6.2% 6.8%

partial quenching 3.5% 1.7%

renormalization 1.7% 4.7%

unphysical kinematics 3.0% 0.22%

derivative of the phase shift 0.32% 0.32%

Wilson coefficients 7.1% 8.1%

Total 18% 19%

TABLE II: Systematic error budget for ReA2 and ImA2.

error is now dominated by the experimental uncertainty
in ε′/ε). The analogous contribution from the disper-
sive part (Im M12) [4] is yet to be determined in lattice
QCD, but we describe progress towards being able to do
this in [24].
Using our value of ImA2 in Eq. (11) and taking the ex-

perimental value given above for ReA2 from K+ decays
we obtain the EWP contribution to ε′/ε, Re(ε′/ε)EWP =
−(6.52± 0.49stat ± 1.24syst)× 10−4.

Conclusions and Outlook

The ab initio calculation of the complex K → (ππ)I=2

decay amplitude A2 described above builds upon sub-
stantial theoretical advances, achieved over many years
as outlined in the introduction. It is encouraging that the
value we find for ReA2 is in good agreement with experi-
ment and we are also able to determine ImA2 for the first
time. It will be important to repeat this calculation us-
ing a second lattice spacing so that a continuum extrap-
olation can be performed thus eliminating the dominant
contribution to the error, reducing the total uncertainty
to about 5%. We expect that the dominant remaining
errors in A2 will then come from the omission of electro-
magnetic and other isospin breaking mixing between the



 

3

mK+ mπ+ Eππ mK − Eππ

Simulated 511.3(3.9) 142.9(1.1) 492.6(5.5) 18.7(4.8)

Physical 493.677(0.016) 139.57018(0.00035) mK+ 0

TABLE I: mK+ , mπ+ and Eππ in the simulation and the corresponding physical values. The results are given in MeV.

0.0014606 − 0.00060408i), Qi are four-quark operators
and Ci are the Wilson coefficients. The calculation of
A2 requires the evaluation of the matrix elements of
three operators, classified by their transformations un-
der SU(3)L × SU(3)R chiral symmetry:

Q(27,1) = (s̄idi)L (ūjdj)L, Q(8,8) = (s̄idi)L (ūjdj)R,

Q(8,8)mix = (s̄idj)L (ūjdi)R , (3)

where i, j are color labels which run from 1 to 3. (Q(8,8)

andQ(8,8)mix are the EWP operators contributing mainly
to ImA2.) The main achievement being reported here
is the successful determination of the matrix elements

I=2〈ππ|Qi|K〉. This starts with the evaluation of the
correlation function

Ci
Kππ(tK , tQ, tππ) = 〈0|Jππ(tππ)Qi(tQ)J

†
K(tK)|0〉

= e−mK(tQ−tK) e−Eππ(tππ−tQ)〈 0 | Jππ(0) |ππ〉 ×
〈ππ|Qi(0)|K〉 〈K|J†

K(0)| 0 〉+ · · · (4)

where J†
K and Jππ are interpolating operators for the

kaon and two-pion states, which are summed over space
and hence have zero momentum. The energy of the two-
pion state, Eππ , is a little larger than 2

√
m2

π + n(π/L)2

because of finite-volume effects (in the isospin 2 state the
two-pion potential is repulsive). Here n is the number of
spatial directions in which anti-periodic boundary con-
ditions have been imposed on the d-quark. The ellipses
represent the contributions of heavier states, which are
suppressed if tQ − tK and tππ − tQ are sufficiently large.
The sources for the kaon and two-pions are placed at
fixed times, tK and tππ (in lattice units), and we vary
the position of the operator tQ.
The required 〈ππ|Qi|K〉 matrix element is one of the

factors in Eq. (4) and we need to remove the remain-
ing factors. This is achieved by evaluating two-point
correlation functions CK(t) = 〈 0 | JK(t)J†

K(0) | 0 〉 and
Cππ(t) = 〈 0 | Jππ(t)J†

ππ(0) | 0 〉, and calculating the ratio

R(tQ) ≡
CKππ(tK , tQ, tππ)

CK(tQ − tK)Cππ(tππ − tQ)
(5)

�
〈ππ|Qi|K〉

〈 0| Jππ(0) |ππ 〉 〈K | J†
K(0) | 0 〉

, (6)

where the factors in the denominator of Eq. (6) are deter-
mined by fitting the correlation functions CK and Cππ.
R(tQ) is independent of tQ if all the time intervals are
sufficiently large. For illustration of the plateaus we

present in Fig. 1 the tQ behavior for the 3 operators for
tππ − tK = 24 . (We also have results for tππ = 20, 28
and 32.)

Having obtained the matrix elements of the bare lattice
operators 〈ππ|QLatt

i |K〉, in order to obtain A2 we must
renormalize the operators and apply finite-volume correc-
tions. The latter are given by the Lellouch-Lüscher factor
in terms of the s-wave ππ-phase shift [2] (the phase-shift
can be obtained from Eππ [16]). In order to combine
our results with the Wilson coefficients calculated in the
MS-NDR scheme [17–19], we perform the renormaliza-
tion in 3 steps. We start by obtaining the renormaliza-
tion constants in four RI-SMOM schemes using the pro-
cedures described in [5]. Because the lattice is coarse the
renormalization scale is chosen to be low, 1.145GeV, to
avoid lattice artefacts. We determine the universal, non-
perturbative continuum step scaling function required to
evolve the operators to 3 GeV using our Iwasaki lat-
tices [20, 21]. Finally at 3GeV we convert the results
to the MS-NDR scheme using one-loop perturbation the-
ory.

Our final results for the matrix elements in the MS-
NDR scheme at a renormalization scale of 3GeV are:

M(27,1) = (3.20± 0.13stat ± 0.58syst) 10
−2GeV3 , (7)

M(8,8) = (5.85± 0.89stat ± 1.11syst) 10
−1GeV3 , (8)

M(8,8)mix = (2.75± 0.12stat ± 0.52syst)GeV3, (9)

where for each operator Qi, Mi = 〈π+π+|Qi |K+〉 .
In terms of these matrix elements, A2e

iδ2 =√
3/2(GF /

√
2)

∑
i (VCKM)i Ci Mi, where the Wilson co-

efficients correspond to operators for the physical K+ →
π+π0 decays with the normalization (s̄d)L [(ūu)L −
(d̄d)]L+(s̄u)L(ūd)L for the (27, 1) operator and similarly
for the EWP operators.

Combining the results in Eqs. (7) - (9) with the Wilson
coefficients, CKM matrix elements and GF we find:

ReA2 = (1.436±0.062stat±0.258syst) 10
−8GeV (10)

ImA2 =−(6.83±0.51stat±1.30syst) 10
−13GeV. (11)

The result for ReA2 agrees well with the experimental
value of 1.479(4)× 10−8GeV obtained from K+ decays
and 1.573(57)×10−8GeV obtained from KS decays (the
small difference arises from the unequal u and d quark
masses and from electromagnetism, two small effects not
included in our calculation). ImA2 is unknown so that
the result in Eq. (11) provides its first direct determi-
nation. For the phase of A2 we find ImA2/ReA2 =
−4.76(37)stat(81)syst 10

−5.
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Results for K"rr ΔI = 3/2 amplitudes

• 63 configurations analyzed, in ongoing calculation.

• PRL 108 (2012) 141601



Some observations and opinions
• With DWF (or Mobius) plus BGQ, 2+1 flavor simulations with m 140 MeV=r  are un-

derway

* 48 96 323# #  DWF+I with 1/a = 1.74 GeV gives ( . )5 5 fm 3 box 
70 time units/BGQ-rack-month -> 500 time units/BGQ-rack-month

* 64 128 163# #  DWF+I with 1/a = 2.28 GeV gives ( . )5 5 fm 3 box 
2x to 4x harder than 1/a = 1.74 GeV

* Many hundreds of configurations with a few BGQ rack-years

* Ideal for many physics measurements

• No chiral extrapolations!

* Still interesting in their own right, for better determination of LEC's

* Might need even lighter pions to know more about convergence of ChPT

* Not an issue for real-world QCD physics

• Adding DSDR term gives viable action for finite temperature studies

• We have reached the point where 2+1 flavor QCD with full continuum symmetries, 
physical pions, physical kaons and large volumes can be done!















BGQ at BNL
• BNL currently has 3+ racks of preproduction BGQ hardware

* 1 rack is owned by BNL

* 2 complete racks are owned by the RIKEN-BNL Research Center (RBRC)

* A fourth partially populated RBRC rack will be used to hold a few small BGQ 
partitions for code development and testing.
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